The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars

نویسندگان

  • David C. Catling
  • Jeffrey M. Moore
چکیده

The Thermal Emission Spectrometer (TES) on the Mars Global Surveyor spacecraft has detected deposits of coarse-grained, gray crystalline hematite in Sinus Meridiani, Aram Chaos, and Vallis Marineris. We argue that the key to the origin of gray hematite is that it requires crystallization at temperatures in excess of about 100 ◦C. We discuss thermal crystallization (1) as diagenesis at a depth of a few kilometers of sediments originally formed in low-temperature waters, or (2) as precipitation from hydrothermal solution. In Aram Chaos, a combination of TES data, Mars Orbiter Camera images, and Mars Orbiter Laser Altimeter (MOLA) topography suggests that high concentrations of hematite were formed in planar strata and have since been exposed by erosion of an overlying light-toned, caprock. Lesser concentrations of hematite are found adjacent to these strata at lower elevations, which we interpret as perhaps due to accumulation from physical weathering. The topography and the collapsed nature of the chaotic terrain favor a hydrothermally charged aquifer as the original setting where the hematite formed. Concentration of iron into such an ore-like body would be chemically favored by saline, Cl-rich hydrothermal fluids. An alternative sedimentary origin requires post-depositional burial to a depth of ∼ 3–5 km to induce thermally driven recrystallization of fine-grained iron oxides to coarse-grained hematite. This depth of burial and re-exposure is difficult to reconcile with commonly inferred martian geological processes. However, shallow burial accompanied by post-burial hydrothermal activity remains plausible. When the hematite regions originally formed, redox balance requires that much hydrogen must have been evolved to complement the extensive oxidation. Finally, we suggest that the coexistence of several factors required to form the gray hematite deposits would have produced a favorable environment for primitive life on early Mars, if it ever existed. These factors include liquid water, abundant electron donors in the form of H2, and abundant electron acceptors in the form of Fe3+.  2003 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water

The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (a-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350–750 km in size centered near 28S latitude between 08 and 58W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fund...

متن کامل

Spatial Grain Size Sorting in Eolian Ripples and Estimation of Wind Conditions on Planetary Surfaces: Application to Meridiani Planum, Mars

The landscape seen by the Mars Exploration Rover (MER) Opportunity at Meridiani Planum is dominated by eolian (wind-blown) ripples with concentrated surface lags of hematitic spherules and fragments. These ripples exhibit profound spatial grain size sorting, with well-sorted coarse-grained crests and poorly sorted, generally finer-grained troughs. These ripples were the most common bed form enc...

متن کامل

Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars

[1] The discovery of sulfate-rich layered deposits with hematite spherules at the landing site of the Opportunity rover is consistent with mineral deposition in an aqueous environment. We evaluate conditions responsible for the formation of a jarosite-goethite-gypsum assemblage with speciation calculations. The results show that the assemblage could have precipitated from acidic solutions forme...

متن کامل

Geohistory Analysis of the Tabas Block (Abdoughi-Parvadeh Basins) as Seen from the Late Triassic through Early Cretaceous Subsidence Curves

The study area is situated in the Middle part of the Tabas Block. It contains outcrops of rocks that formed along longitudinal faults in Early Cimmerian orogenic phase. The basin subsided along these faults from the Late Triassic to Early Cretaceous, which include two sedimentary cycles. A sedimentary cycle, related to Upper Triassic to Bajocian is known as Shemshak group. Another sedimentary c...

متن کامل

A possible surprise for the Mars rover “Opportunity”: The inferred coarse hematite may instead be fine-grained, consolidated hematite

Since 2001, there have been two, parallel interpretations of Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of Sinus Meridiani, which are: (1) coarse hematite is the only spectral match; and (2) fine-grained hematite with particles closer than ~wavelength (“fine-intimate hematite”, e.g., coating, ferricrete) is a better match, but coarse hematite is also viable. The TES t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002